Modeling of Dynamical Systems via Successive Graph Approximations
نویسندگان
چکیده
منابع مشابه
ENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH
Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولentropy of dynamical systems on weights of a graph
let $g$ be a finite simple graph whose vertices and edges are weighted by two functions. in this paper we shall define and calculate entropy of a dynamical system on weights of the graph $g$, by using the weights of vertices and edges of $g$. we examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. at the end it is shown that, for $rin [0,+infty]$, t...
متن کاملStochastic Training of Neural Networks via Successive Convex Approximations
This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The basic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.1271